If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+2n-200=0
a = 3; b = 2; c = -200;
Δ = b2-4ac
Δ = 22-4·3·(-200)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{601}}{2*3}=\frac{-2-2\sqrt{601}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{601}}{2*3}=\frac{-2+2\sqrt{601}}{6} $
| 8x+3x-10=100 | | 12g=12(2/3g+-1)+11 | | 10(y+6)=70 | | 1/2x2/7x=3 | | 7+x=14+7-1 | | -32x^2+180x=0 | | 19+28-5=14x | | -13-7p=6p+7(8p+8) | | ?=8x+7 | | 2x-19=3x-19 | | -2n-4-n=-3n-4 | | b-150=26 | | 2+x=18+1+2 | | 2(4x-1)=-10(x-3) | | 117=15x-3 | | -3/5=9/10-3x/2 | | -3/9=9/10-3x/2 | | -8y+4(y-5)=-28 | | 3x+7=5x+-1 | | x+15-4=18-1 | | 3x+7=5x+-2 | | 3x+7=5x+-4 | | 3x+7=5x+-3 | | -7p/5+3p/4=-13/30 | | 7x-8=-40 | | (x-10)+(4x-10)=20 | | x+15-5=19-2 | | 9+9t-6=-10-4t | | -2x-6=-2x+2 | | 117=-6-3(-8k-1) | | √25+14x-6x=2x | | 9=9t-6=-10-4t |